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Abstract
Stochastic mass transport models are usually described by specifying hopping
rates of particles between sites of a given lattice, and the goal is to predict the
existence and properties of the steady state. Here we ask the reverse question:
given a stationary state that factorizes over links (pairs of sites) of an arbitrary
connected graph, what are possible hopping rates that converge to this state?
We define a class of dynamical systems which lead to the same steady state and
guarantee current conservation but may differ by the induced current strength.
For the special case of anisotropic hopping in two dimensions, we discuss some
aspects of the phase structure. We also show how this case can be traced back
to an effective zero-range process in one dimension which is solvable for a
large class of hopping functions.

PACS numbers: 89.75.Fb, 05.40.−a, 64.60.Ak

1. Introduction

Stochastic transport of some conserved quantity, generically called ‘mass’, has recently
attracted much attention due to a large variety of applications ranging from microscopic
(intracellular) to macroscopic (highway) traffic [1]. Important examples of technological
interest are granular flow [2] and clustering [3]. Also from a theoretical point of view,
these systems are challenging, since they are in general out of equilibrium and allow for
phase transitions even in one dimension [4]. An example is spontaneous symmetry breaking
and the phenomenon of condensation, which happens above some critical mass density and
corresponds to jams in traffic or aggregation in granular media. Nevertheless, simple models
such as the zero-range process (ZRP) [5], a dynamical version of the balls-in-boxes model [6],
or asymmetric simple exclusion processes [7], can capture some important aspects of these
problems while remaining analytically solvable.
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Non-equilibrium models are defined by specifying the dynamics rather than the probability
of a microstate. Usually one proposes the transition rates between states, and the goal is to
predict the existence and the properties of a stationary state. This is the state where macroscopic
observables remain constant, although some currents may flow in the system. In this paper,
we study the reverse problem, which is similar in spirit to [8]. Given a steady state which
assumes a form factorized over pairs of sites that correspond to the links of an arbitrary
graph, we search for a class of transition probabilities which lead to this state. This approach
is motivated by the fact that knowledge of the stationary states of non-equilibrium models
generically facilitates the discussion of the phase diagram, because a number of observables
can be calculated analytically. For instance, the ZRP, defined in terms of particles hopping
between sites of a lattice and interacting only if they are at the same node, has a steady state
that factorizes over the sites of a lattice, or more generally, over nodes of an arbitrary graph.
The factorization allows for a convenient mathematical treatment. A generalization of the ZRP
that leads to pair-factorized steady states (PFSS) was proposed in [9] for a one-dimensional
ring topology. It was shown that nearest-neighbor exponentially suppressed interactions plus
some extra ‘pinning’ (ZRP-like) potential result in a condensate that is spatially extended.
In [10] the shape of the condensate was derived. It was also shown that the scaling of the
extension of the condensate with the system size can be tuned via an appropriate competition
between local and ultralocal hopping interactions.

We shall show in this paper that the ZRP and the PFSS on a ring (where PFSS here should
be understood as the corresponding processes leading to PFSS) are special cases of a more
general setting. Beyond that, we shall consider non-local processes on an arbitrary graph, or
processes with anisotropic hopping in two dimensions. In the latter case, we shall demonstrate
that it can be dimensionally reduced to a ZRP in one dimension with weights that contain the
information on the pair-factorized stationary behavior in the second dimension. Therefore,
former results on PFSS on a one-dimensional ring topology [10] can be used to derive features
of the condensation transition in the anisotropic case.

2. The model and its steady state

We consider a connected, undirected but otherwise arbitrary graph with N nodes (sites), and
node degrees k1, . . . , kN . We place M particles of unit mass on the nodes of this graph.
Particles here stands for a generic mass that is involved in the transport process and has
bosonic properties in the sense that mi � 0 particles may be assigned to the same site i. The
distribution of occupation numbers of nodes is denoted as �m = {m1, . . . , mN }. The dynamics
is defined as follows. We pick up a randomly chosen node i, and if it is not empty, a single
particle departures with rate ui(mi | . . .), where the dots stand for occupation numbers of other
sites (in general, not necessarily nearest neighbors of node i). Next, the particle chooses a
target site j with probability Wij ≡ W(i → j). The transition matrix, W, may be arbitrary,
with the only assumption that all Wij � 0 and

∑
j Wij = 1 for any i. The hopping event

is thus split into two steps: the departure from a site, determined by the function u, and the
choice of destination site, determined by the rates Wij .

We will next derive under which conditions on the hopping rate and the transition matrix
the system reaches a steady state that assumes a pair-factorized form,

w( �m) =
∏
〈i,j〉

gij (mi,mj )

N∏
i=1

k
mi

i δ

(
N∑

i=1

mi − M

)
. (1)

Here 〈i, j 〉 denotes pairs of nearest neighbors, and gij (mi,mj ) is a symmetric but otherwise
arbitrary weight function that may depend on the link 〈i, j 〉. The Kronecker δ-function, that
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ensures conservation of the overall mass M will be dropped below. The factors k
mi

i are slit off
for further convenience. As we shall prove next, a possible class of hopping rates (although
not the only possible one, since, for example, the symmetry condition on g(m, n) was released
in [9]) is given by

ui(mi | . . .) =
∏

j∈N (i)

gij (mi − 1,mj )

gij (mi,mj )
, (2)

where N (i) denotes the set of neighbors of node i provided the transition matrix Wij satisfies
the condition

ki =
∑

j

Wjikj . (3)

To derive the above formulae, let us start with the balance equation for a conserved probability
current at each node i; this is a condition that is necessary for having a steady state:

ui(mi | . . .)w( �m) =
∑

j

W(j → i)uj (mj + 1| . . . , mi − 1, . . .)

× w(m1, . . . , mi − 1, . . . , mj + 1, . . . , mN). (4)

Equation (4) says that the probability with which a particle leaves a site i with mi particles
in a configuration given by occupation numbers �m should be the same as the total probability
that node i receives one particle from any site j that was formerly in a configuration with
mj + 1 particles at site j and mi − 1 particles at site i. The individual probabilities for a
hopping event from j to i are given by W(j → i). As a sufficient condition, the probability
current is conserved if (4) is satisfied individually for any i ∈ {1, . . . , N} and any set of
occupation numbers �m. Now, dividing (4) by w( �m), using the definition (1) of the steady
state, and inserting (2) as an assumed form of ui(mi | . . .), we cancel common factors in the
ratio w(. . .)/w(. . .) on the right-hand side and expand it to obtain

ui(mi | . . .) =
∑

j

Wji

⎛
⎜⎜⎝ gij (mj ,mi − 1)

gij (mj + 1,mi − 1)

∏
a∈N (j)

a �=i

gaj (mj ,ma)

gaj (mj + 1,ma)

⎞
⎟⎟⎠ kj

ki

×

⎛
⎜⎜⎝ ∏

b∈N (i)
b �=j

gbi(mi − 1,mb)

gbi(mi,mb)

⎞
⎟⎟⎠gij (mi − 1,mj + 1)

gij (mi,mj )

∏
c∈N (j)

c �=i

gcj (mj + 1,mc)

gcj (mj ,mc)
. (5)

Note that the first bracket is just uj , rewritten as a product of ratios of g, with the part for
a = i written out explicitly. Similarly we express the ratio of w(. . .)/w(. . .) in terms of the
weight functions g and explicitly split off the factor for b = j . The first product (over a) and
the last product (over c) as well as two of the terms gij cancel out. We end up with

ui(mi | . . .) =
∑

j

Wji

kj

ki

⎛
⎝ ∏

b∈N (i)

gbi(mi − 1,mb)

gbi(mi,mb)

⎞
⎠ , (6)

where the product over b now includes all nearest neighbors of i. The expression in the bracket
is just ui(mi | . . .). Therefore, equation (6) is satisfied if

ki =
∑

j

Wjikj . (7)

This is precisely (3) which completes the derivation.
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A curious reader might ask now, what is the role of the node degrees ki in the above proof.
In principle, the ki’s have not to be the node degrees but may be arbitrary positive numbers.
However, on an arbitrary graph, if one assumes ki to be the degree of node i, the simplest
solution of equation (3) is then just Wij = 1/ki . This corresponds to equally probable jumps
to all neighbors of a given node and guarantees that, if there is only a single particle in the
system, it behaves as an unbiased random walker. Moreover, for gij (m, n) = 1 the model
reduces to the free ZRP described in [11].

Before we come to examples, we want to add a remark on a useful possible reinterpretation
of the involved links included in Wij . Since the stationary state (1) only refers to the occupation
number distribution and depends on the hopping function u, but not on the transition matrix
Wij , by making different choices on Wij we can tune the current of particles in the system.
Moreover, the set of non-zero Wij does not need to coincide with the set of existing links
in the graph. This may be seen as if we had two graphs: an undirected one that specifies
which pairs of nodes enter the steady state (1), and a directed and weighted graph of allowed
transitions, defined by Wij = W(i → j). This fact can be used in numerical simulations of
the steady state. Suppose that we have a process which, although being out of equilibrium,
leads to (1). If we are interested only in static properties of the steady state and have to turn to
Monte Carlo simulations as the model is not fully analytically accessible, we can change the
dynamics (by changing Wij ) in order to speed up the convergence toward the stationary state,
or to reduce the autocorrelation time. An example is to turn the local hopping of particles
with given hopping rates into a non-local update scheme by choosing two random nodes and
moving the particle between them, accepting or rejecting the move according to the rules of
the Metropolis algorithm. This can be viewed as specifying Wij = 1/(N − 1) for all i, j , i.e.,
as making the transition graph a complete graph. One can check that such a choice obeys (3),
and since the probability of moving the particle along each link is the same in both directions,
there is no macroscopic particle current. More generally, if Wij = 1/ki for every link 〈i, j 〉,
equation (3) is fulfilled and the current vanishes, so the system is actually in equilibrium.
This method can, in particular, be used to simulate the PFSS on a ring mentioned above. In
the condensed phase, effectively non-local updates via the Metropolis algorithm accelerate
the convergence to the stationary state, since it facilitates the melting of local, separated,
metastable aggregates to finally merge into a single condensate.

3. Applications

Let us now discuss some examples. Choosing gab(m, n) ≡ √
p(m)p(n) on a one-dimensional

closed chain (so that ki = 2 for all sites i), i.e., factorizing the two-point weight over nodes,
and making it the same for all links, one obtains ui(mi | . . .) = u(mi) ≡ p(mi − 1)/p(mi).
Here u(m) depends only on the occupation number at the departure node. If one now chooses
Wij in any way that satisfies (3), the stationary state w( �m) = p(m1) · · · p(mN) is precisely
the steady state of the ZRP [5].

A more complicated but still one-dimensional example is given by a model with
gab(m, n) ≡ g(m, n) independent of the link, but depending on occupation numbers at its
both ends. Equation (2) then leads to

ui(mi |mi−1,mi+1) = β(mi,mi+1)β(mi,mi−1), (8)

where β(m, n) = g(m − 1, n)/g(m, n). This is essentially the PFSS considered in [9]. The
only difference is that no assumption on the symmetry of g(m, n) was made there. It has been
shown in [9] that when

g(m, n) = exp[−J |m − n| + U(δm,0 + δn,0)/2], (9)
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in the thermodynamic limit the system exhibits a condensation transition above some critical
density of particles ρ = M/N which is a function of the parameters J,U . The nature of this
condensate is different from an analogous phenomenon in the ZRP, because it emerges due to
nearest-neighbor interactions and not due to the on-site potential p(m) as in the former case.
As a result, the condensate is extended over ∼√

N sites; see [9, 10] for details.
Another simple special case is a square lattice with periodic boundary conditions on which

we can specify hopping rates that factorize over adjacent sites. Let us denote a site on this
two-dimensional torus by its coordinates (i, j). From (3) we obtain that

W(i − 1, j → i, j) + W(i + 1, j → i, j) + W(i, j + 1 → i, j) + W(i, j − 1 → i, j) = 1,

(10)

so that the probabilities for ending up at target site (i, j) should add up to 1. Similarly, the
probabilities for leaving a site (i, j) as the departure site should add up to 1, that is

W(i, j → i + 1, j) + W(i, j → i − 1, j) + W(i, j → i, j + 1) + W(i, j → i, j − 1) = 1.

(11)

The generalization to other lattices types (hypercubic, triangular, etc) is obvious.
Equations (10) and (11) are the only conditions on transition probabilities. They have many
solutions, which differ by the degree of current anisotropy, e.g., the current may flow only in
horizontal, vertical or in both directions.

4. Anisotropic interactions in two dimensions

Now we shall describe a case which (from a theoretical point of view) is of particular interest
due to its analytic solvability and the existence of two phase transitions. Let us assume that
we have a two-dimensional lattice with N = L × L sites, periodic boundary conditions and
the following steady state:

w( �m) =
L∏

i=1

L∏
j=1

g(mi,j , mi,j+1)δ

⎛
⎝∑

i,j

mi,j − M

⎞
⎠ . (12)

This implies that g(m, n) lives on links only in one, say vertical, direction. On horizontal
links, the weight is assumed, for simplicity, to be constant and equal to 1, but in general, one
may choose any weight f (mi,j ) depending only on a single site. The hopping rate assumes
now the form

u(mi,j | . . .) = g(mi,j − 1,mi,j−1)

g(mi,j , mi,j−1)

g(mi,j − 1,mi,j+1)

g(mi,j , mi,j+1)
, (13)

which is very similar to (8), but the particles can now jump either in the horizontal or in
the vertical direction. The current is defined by any W obeying equations (10) and (11).
Although we will not address dynamical issues here, for definiteness let us assume that the
particles can jump only to the right with probability W(i, j → i, j + 1) = p or to the top with
probability W(i, j → i + 1, j) = 1−p, while W(i, j → i, j −1) = W(i, j → i −1, j) = 0.
Moreover, let the weight g(m, n) be chosen according to (9). Based on our knowledge on
the separate ZRP and PFSS processes in one dimension, we may very naively expect the
following scenarios to be true: (a) below a certain mass density, particles distribute over
the two-dimensional grid homogeneously like a liquid, (b) above some critical density, as a
remnant of the interaction-dependent hopping in the vertical direction, an extended condensate
forms separately along each vertical line, (c) above some critical density, as a remnant of the
ZRP along the horizontal direction, the overall condensate gets localized onto a single vertical
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Figure 1. Snapshots of Monte Carlo simulations of the anisotropic system with L = 200, J = U =
1, for various densities ρ = 0.2 (upper left), 0.3 (upper right), 0.35 (bottom left) and 0.5 (bottom
right). For ρ = 0.2 the system is in the liquid phase. For ρ = 0.3 it is slightly above ρ1 ≈ 0.24—a
condensate emerges. For ρ = 0.35 the condensate is fully developed. For ρ = 0.5 > ρ2 ≈ 0.45,
the borders of the condensate merge and the whole vertical line is uniformly covered.

line, along which the form of the condensate is determined by the one-dimensional PFSS,
(d) the condensate stays localized along the horizontal axis, but looks like a liquid along the
condensate-carrying vertical line. A quick look on figure 1 showing snapshots of Monte Carlo
simulations for J = U = 1 and increasing density ρ suggests that scenarios (a) and (c) are
realized below and above some ρ1, respectively. Scenario (d) happens for some ρ2 > ρ1,
while scenario (b) is excluded. We shall derive next why only these scenarios can happen. We
will argue that ρ1 is the critical density of the corresponding PFSS in one dimension and also
calculate ρ2. Note that the whole system does not simply split into a direct product of a ZRP
in one dimension and a PFSS in the other dimension, since both subsystems are coupled via
the overall mass conservation.

First we observe the following. In the steady state we can treat the probability w( �m) as
the weight of a microstate of a system being in equilibrium; therefore, we can formally write
the partition function of the system in the canonical formulation as

Z2D(N = L2,M) =
∑
{mi,j }

L∏
i=1

L∏
j=1

g(mi,j , mi,j+1)δ

⎛
⎝∑

i,j

mij − M

⎞
⎠

=
M∑

M1=0

· · ·
M∑

ML=0

L∏
i=1

Z1D(L,Mi)δ

(∑
i

Mi − M

)
, (14)

where

Z1D(L,m) =
m∑

m1=0

· · ·
m∑

mL=0

L∏
i=1

g(mi,mi+1)δ

(∑
i

mi − m

)
(15)
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is the partition function of a 1D PFSS. Since (14) has the same functional form as the
partition function for the ZRP [12], the partition function Z1D may be seen as the weight
p(m) ≡ Z1D(L,m) that is now associated with the total mass m = Mi along the ith vertical
line.

In [10] we have shown that for m > ρcL, where ρc is the critical density for
condensation in the one-dimensional system, Z1D(L,m) behaves as ∼ exp(−c

√
m) with

some c > 0. This means that for large m, the hopping rate of the corresponding ZRP,
u(m) = p(m − 1)/p(m) = Z1D(L,m − 1)/Z1D(L,m), behaves as u(m) ∼= 1 + c/(2

√
m).

For such a hopping rate it is known [12] that the ZRP exhibits a condensation transition. The
condensate occupies a single site, and the fluid-phase distribution is a stretched exponential
distribution. Since m denotes now the mass along a vertical line, the mapping from the ZRP
back to the anisotropic model allows us to predict the spontaneous symmetry breaking into the
state with a condensate so that one of the masses Mi will grow to pick up all the difference,
�M = M − ρ1L

2 = L2(ρ − ρ1), between the total mass M and the mass ρ1L
2 in the critical

background. So, differently from scenario (b), not each line carries its own condensate, but as
anticipated in scenario (c) the condensate is localized onto a single line if there is a condensate
at all, while all other lines have a mass density close to the critical value. To predict the critical
density ρ1 we observe that (14) in the grand-canonical formulation,

Z2D(L2, z) =
∑
M

Z2D(L2,M)zM =
∑
{Mi }

L∏
i=1

Z1D(L,Mi)z
Mi

=
(∑

m

Z1D(L,m)zm

)L

, (16)

becomes just a power of a grand-canonical partition function in one dimension. Since the
condensation transition is determined by the non-analytic behavior of Z2D, the critical density
ρ1 must be the same as ρc of the one-dimensional PFSS. For J = U = 1 it reads ρ1 ≈ 0.24,
as follows from [10].

In order to check how the particles are distributed along the line which carries the
condensate, in particular to determine the shape and extension of the condensate, we will
again make use of results of [10] for the one-dimensional system. It is proved there that
for sufficiently large systems, the condensate has a quasi-parabolic shape with very sharp
borders. Its width W grows proportionally to

√
�M , so that here W = w0L

√
ρ − ρ1 with

some constant w0 that depends only on J,U from (9) and reads w0 ≈ 2.2 for J = U = 1.
This is precisely the shape seen in figure 1, for ρ1 < ρ < ρ2. When the density exceeds
ρ2 = 1/w2

0 + ρ1 ≈ 0.45, the width W becomes equal to the linear size L. Since fluctuations
of occupation numbers in the condensate can be neglected in the thermodynamic limit [10],
for large systems and ρ > ρ2 there are no empty sites. The ultralocal weight eU(δm,0+δn,0)/2

becomes equal to one and hence g(m, n) effectively behaves as exp(−J |m − n|) as if U were
zero. We may, therefore, see the line carrying the condensate as a new PFSS with U = 0.
From [9], we know that such a system is always in the liquid state. This means that at ρ = ρ2

the system undergoes a second (geometric) phase transition to a state, in which both borders
of the condensate merge, and the particle distribution along the condensate line looks uniform
apart from fluctuations, see figure 1, which corresponds to scenario (d). We call it a geometric
phase transition as at ρ2 the condensate starts percolating all over the line. It is not just a
finite-size effect of merging borders, because ρ2 remains finite also in the thermodynamic
limit L → ∞. Thus the condensate changes its shape from quasi-parabolic in the vertical
and localized in the horizontal direction, to a homogeneous distribution vertically, but still

7
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localized horizontally. Any transient remnant of the former condensate peak gets rapidly
washed out toward a homogeneous distribution.

5. Conclusion

In summary, we proposed a class of hopping rates that leads to pair-factorized steady states
on arbitrary graphs. The proof holds, in particular, for non-local and inhomogeneous hopping
rates. As an example we studied an anisotropic two-dimensional system with PFSS, for which
we predicted the onset of condensation including the shape and the scaling of the condensate
by dimensional reduction of the two-dimensional system to an effective zero-range process in
one dimension.
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